
Acceptable protection of software intellectual property:
a survey of software developers and lawyers

Effy Oz*

Management Division, Penn State University, Great Valley, 30 E. Swedesford Road, Malvern, PA 19355, USA

Accepted 18 May 1998

Abstract

The article reports the results of a survey on the optimal legal way to protect developers' rights to their intellectual property in

the US. Two groups were incorporated: software developers and attorneys. The majority of both groups favor copyright as the

legal method, but attorneys prefer patenting with a longer protection period. There is no difference between the groups with

respect to the desired length of copyright protection. Majorities in both groups prefer the current period of 75 years for

corporations. By comparing information from 1992 and 1996, we ®nd that software developers now are more in favor of

protection of user interfaces. We found little differences between the groups regarding different categories of software. We

also found high proportions of support for protection of source and object codes. Both groups prefer stronger protection for

systems than application software. Attorneys, more than developers, favored greater protection for application software than

for game software. We expected software developers to favor regulations that would force owners of systems software to offer

their creation to any interested party for equal terms. To our surprise, there was signi®cantly more support for this idea among

attorneys than among the developers. Majorities in both groups support a special law for protection of software intellectual

property. # 1998 Elsevier Science B.V. All rights reserved

Keywords: Software; Software developers; Intellectual property; Copyright; Patent

1. Introduction

The software industry has become extremely

powerful in recent years, and there is agreement that

software is an important intellectual property. How-

ever, there are disagreements among people inside and

outside the software industry on the necessary extent

of the protection. Any proposed solution must be

satisfactory to technical parties; i.e., corporate and

individual developers of software. However, it must

also be legally practical to follow and prosecute

offenses.

Although the US Congress has considered the issue

and the US Patent and Trademark Of®ce has re-

evaluated their legal approach toward protection of

software, there have not been extensive studies that

involved opinions of the software industry and the

legal profession. In this study we polled members of

these two groups about the issue.

To date, only one survey has been conducted to

solicit opinions from software developers [4]. The

Information & Management 34 (1998) 161±173

*Tel.: +1-610-648-3234; fax: +1-610-889-1334; e-mail:

effyoz@psu.edu

0378-7206/98/$19.00 # 1998 Elsevier Science B.V. All rights reserved

PII: S-0378-7206(98)00049-4

purpose of our study was (1) to replicate that survey 4

years later; (2) to conduct a similar survey among

attorneys who specialize in intellectual property and

computer law, (3) to ®nd the protection mechanism

preferred by the two groups, and (4) to test the

proposition that there are no signi®cant differences

between the two groups.

2. Legal and economic background

The growing dependence on software for business,

scienti®c, educational, and entertainment purposes has

created a very competitive software industry. Writing

a computer program requires a substantial investment

of time and money.

In a capitalist economy, very few are willing to

make an investment unless there is reasonable grounds

to believe that a pro®t can be made by selling it. The

developer must, therefore, have the ability to prevent

others from using a program without paying for it.

Unfortunately for the developer, the inherent nature of

software requires that a computer be able to copy the

program before it can be used, but any program that

can be copied with permission can be copied without

it. To recoup the investment in a large program often

requires the sale of millions of copies; this eliminates

any possibility for a personal contract between the

developer and the ultimate user.1 Thus, the program-

mer must have some legal means of protection against

unauthorized copying.

United States law provides the developer with three

potential means of protecting against unauthorized

copying and/or use: (1) trade secret; (2) patent; and

(3) copyright. At present, the methods are often all

used. Patent and copyright laws protect different

aspects of the product. Both require publication of

at least part of the software, which may interfere with

trade secret rights. The law relating to all types of

protection was developed long before the advent of

computers and computer programs. It has not been

changed radically.

The laws concerning trade secrets require that the

subject matter be protected to remain secret, and that

only persons who have a legal obligation not to reveal

the information have access to that information. The

moment the information comes into the hands of a

person who has no such obligation, the information is

no longer secret and the legal protection may be lost.

The owner may have a cause of action against some-

one for breach of contract or ®duciary duty, but the

proverbial cat is out of the bag, never to be recap-

tured.2

The US Constitution authorizes Congress to enact

laws that grant a creator exclusive, but limited, rights

to exploit his or her creation. Pursuant to that author-

ization, Congress has enacted laws granting `patents'

and `copyrights.' The two types of legal protection

protect different things. Patent law protects inventions,

regardless of the means of expression. Copyright law

protects the expression of ideas, but not the idea

expressed. The requirements for obtaining patents

and copyrights differ. To obtain a patent, the originator

must show that the invention is new, unique, useful,

and not merely an adaptation or application of an old

idea.

Applying copyright law to software presents numer-

ous problems. At a minimum, copyright law was not

created with computers or software in mind. Books,

paintings, plays, and the like, reproduced by hand or

printing press, are equally protected. Technological

advances such as photography, radio and television,

challenged copyright laws, but the problems were

adequately met with rather minor changes. Computer

software poses an entirely different type of challenge,

one that has not yet been met in spite of some copy-

right law amendments speci®cally related to compu-

ters; this has engendered tremendous controversy.

One problem with applying copyright law to soft-

ware is the multitude of levels involved. At a mini-

mum, for any one program there are three levels:

source code, object code, and what is produced on

the computer screen. If the copyright is limited to

either object code or source code, the program is

effectively unprotected.

Protecting codes does not solve the problem either.

Software is a tool. It is used to make a computer

1The normal method of product distribution in today's world also

effectively precludes most contact between the producer and the

ultimate consumer.

2Even if the developer is ultimately successful in a breach of

duty action, the time and effort required to obtain a judgment and

the problems with collecting on that judgment make having a cause

of action a poor alternative to retaining the secret.

162 E. Oz / Information & Management 34 (1998) 161±173

perform particular functions, and to produce a desired

result. Different instructions can produce the same or a

similar result. The `user interface,' what appears on

the screen, is therefore a signi®cant aspect of any

software. That is also the point at which many sig-

ni®cant problems arise with copyright law. The US

Copyright Of®ce has declared that the program codes

and the resulting screen display are covered by a single

copyright (see 37 C.F.R.y 202.3(b) (1993); Copyright

Of®ce Announcement, 36 Pat. Trademark & Copy-

right J. (BNA) 152, 155 (1988)). This, of itself,

produces a conceptual problem not raised by tradi-

tional means of expression. When a painter produces a

work of art, the resulting work (the user interface) is

protected by copyright, not the brush strokes and

techniques used to produce the work (the software).

On the other hand, if a person writes a set of instruc-

tions for constructing a model ship, the written instruc-

tions are protected by copyright, not a model ship

produced by some person following the instructions.

The Copyright Of®ce's position is analogous to pro-

tecting both the written instructions and the resulting

model. For software, the Copyright Of®ce's position is

probably appropriate, but the legal theory problems

engendered are apparent.

The utilitarian (tool) nature of software presents

other problems. Despite what advertising might imply,

there are a limited number of operations that can be

carried out using a computer program. The three most

pervasive are electronic spreadsheet operations, word

processing operations, and games. (Since programs

performing those tasks are desired by millions of

users, those types of programs are potentially very

lucrative.) There are many different programs that

produce spreadsheet applications. To be utilitarian,

a spreadsheet program must perform speci®c func-

tions, e.g., produce a grid of columns and rows, allow

entry of numbers in the grid spaces, manipulate the

numbers in the grid spaces, allow the results to be

printed, etc. Producing a functional spreadsheet pro-

gram is an idea, not protected by copyright law.

However, at some point one person's copyrighted

spreadsheet program may be infringed by another

(see Lotus Dev. Corp. v. Paperback Software Int'l,

740 F. Supp. 37 (D. Mass. 1990)).

Another signi®cant problem relates to the current

practice of building on, or assuming the availability of,

an existing program. This is particularly true with

respect to operating system programs. An application

program must be written so that it is compatible with

the operating system program; otherwise it may not be

effective. These programs necessarily emulate or copy

portions of the related existing program. If developers

of these subsidiary programs must obtain licenses

from the existing program's owner, the additional cost

may be prohibitive, and in any event will tend to sti¯e

innovation.

While a number of articles have been published

which address this problem, most of them have been

written from the legal point of view, or the software

professional point of view, not both (e.g., [1, 3], and

several Legally Speaking articles by P. Samuelson in

CACM issues). The purpose of our study was to

address both software developers and legal profes-

sionals with the same questions on the issue and to

try to glean opinions that highlight a convergence

toward an acceptable legal method to protect

intellectual rights in software, as well as points of

disagreement.

2.1. Arguments for software copyright and patents

The main argument for protecting software under

copyright laws is that it is a creation no different in

nature than literary, musical, or any other artistic fruit

of intellectual effort. If we wish to encourage devel-

opment in this important segment of the economy, we

must grant the right to make copies to the author of

new software. At the cost of monopolistic power to the

author, society gains tools that increase productivity

and the general well-being of society. There are also

some compelling arguments for patent protection for

software [2]:

1. Software is not different from other areas of

technological innovation. Denial of patents to

software developers will discourage inventive

endeavors, which, eventually, will hurt society.

2. Often, investment in research and development is

substantial. (IBM reportedly invested US$ 2.5

billion in its OS/2 operating system program.)

So is the effort to market the new product. Patents

protect the initial intellectual assets of a small

startup company. This enables the company to

evolve into an industry giant. Examples: GE, AT

& T, Polaroid, Xerox, and Hewlett-Packard.

E. Oz / Information & Management 34 (1998) 161±173 163

3. Because of the general success of the software

industry, few inventors have sought patents for

their computer programs. However, imitators ben-

e®tted from the efforts of the true inventors. Had

patents been more widespread, the true innovators

would enjoy a fairer share of the rewards.

4. More software patents would result in a greater

diversity of categories and features. Without

patents, developers settle for improving existing

ideas, but avoid the risk of researching new ideas.

5. The argument that software should be nonpaten-

table because it is used in computers, which are

facilitators of information ¯ow, is invalid. The

telephone, phonograph, and radio, served the same

purpose, and nevertheless were patented.

2.2. Arguments against software copyright

As copyright is granted for user interface design, the

lion share of resistance is to granting protection to user

interfaces. The major arguments are [5]:

1. Until 1986 there was no copyright protection for

the user interface. There was incentive for soft-

ware companies to develop better interfaces

although others imitated them. The commercial

success of the original works was not hurt by

imitations. The main incentive was in the

originality of the program. Greater protection

increases the price to consumers.

2. Copyrights do not protect small companies. Sup-

pose a small company develops a new interface but

can reach only a few thousand buyers. A larger

company that can tap a market of a million users

imitates the interface. Granting copyright to the

small company would not change the result. It

would force the large company to develop another

interface, but, because of its greater marketing

clout, new customers are likely to prefer the pro-

duct of the large company.

3. Copyrights serve the public by encouraging diver-

sity, but diversity in interfaces is undesirable.

While we want to read a new novel, listen to a

new piece of music, and watch a new movie,

diversity does not serve the public when it comes

to interfaces. All cars are equipped with similar

dash boards, similar steering wheels, and similar

transmission sticks. This eliminates the need to

retrain a driver for driving a new car. The same

applies to software interfaces. What is needed is

similarities, not diversity.

4. Monopoly on an established interface may yield

monopoly on the functions accessed through the

interface. This would reduce competition in the

area where competition best serves the public: the

functionality of the program.

5. Copyright is a tool for extortion. Virtually every

computer program needs an interface. It is dif®cult

to design a new interface without some similarities

to an existing one. The reality in the business world

is such that to avoid long and expensive trials, a

company likely to be sued will tend to pay royalties

even if the grounds for the suit are dubious. Inter-

face copyright encourages the holder to threaten

another developer with a suit that the holder could

not win.

6. Interface copyright inhibits innovation. Usually,

user interfaces are not the fruit of original, isolated,

intellectual effort. Rather, they are the result of

re®nement and adaptation of a previous idea. Such

were the cases of the Macintosh interface, which

drew on ideas developed at Xerox, 1±2±3 which

adapted VisiCalc's idea of the electronic spread-

sheet, and many other useful interfaces. Interfaces

result from an evolutionary, not revolutionary,

processes. Users often prefer small, incremental,

improvements to totally new concepts.

2.3. Arguments against software patents

Many people who object to granting patents for

software do so for the same reasons they object to

software copyrights. However, there are some argu-

ments against patents per se. The major ones are:

1. Usually, a computer program does not re¯ect a

new idea. It only automates a widely known process.

A patent for the program is bound to cover the

underlying idea, too, which may be obvious.

2. In the software development arena, communication

among researchers and developers has been

remarkably open. The race for a patent diminishes

the freedom of communication among those who

work on a certain technique.

3. Experience shows that software designers almost

always perfect an existing program. There is a

164 E. Oz / Information & Management 34 (1998) 161±173

continuous process of building new programs on

the foundations of older programs. This competi-

tive perfection bene®ts the public. Granting a

patent for a program may discourage further devel-

opment.

4. A patent increases the cost, and risk, of work in the

area to which the patent relates, and discourages

the entrance of new players, particularly indivi-

duals.

5. The software industry has ¯ourished with a rela-

tively small number of patents. Patents do not

encourage progress.

6. Computers are used as a means of expression and

as facilitators of information ¯ow. Software patents

may restrict the generation and ¯ow of information.

7. The wide use of a program makes it obvious.

Nonetheless, in some cases, a company applied

for, and received, a patent for such a program or for

a program that incorporates some of the features

used in the already distributed program. The users

became infringers overnight. The previous use is

dif®cult to prove.

8. One program may infringe many patents. Patent

searches are tedious and expensive. The fear that

the developer may infringe unknown patents deters

small entrepreneurs who cannot afford the expen-

sive patent search.

9. Many innovations are the by-products of solving

problems in the course of software development.

The innovations do not occur with the purpose of

applying for patents. When developing software

that involves the same type of problems, an `inven-

tion' is often reinvented multiple times, indepen-

dently, by other developers. Patents for such

`inventions' limit future development of better

programs.

These arguments suggest some dissatisfaction with

the current situation.

3. Method

3.1. Questionnaire

A six-section questionnaire was developed. The ®rst

section included three questions regarding the pre-

ferred type and length of protection.

The second section focused on what to protect. It

replicated the table presented in the 1992 Samuelson

et al.'s table. However, in our study, information was

gathered not only from software developers, but also

from attorneys. For comparison purposes, column a of

Table 7 shows the results of the 1992 study. Columns b

and c summarize the responses in the current study.

The third section presented three statements regard-

ing protection of different types of software. The

respondents were asked to indicate, on a seven-point

Likert scale, the degree to which they agree or disagree

with the statements. Major revisions in system soft-

ware are less frequent than in application software.

Therefore, there may be a reason to afford system

software greater protection than that given to applica-

tion software. Thus, the ®rst statement is:

1. System software should be afforded greater

protection than application software.

Business applications may be perceived as more

economically important than game software because

they improve business processes. Also, there seems to

be a greater variety and more sophistication in busi-

ness applications than in game programs. Thus, the

second statement is:

2. Business application software should be afforded

greater protection than game software.

The rise of Microsoft as a major purveyor of

standard operating systems and its legal skirmish with

the US Department of Justice was accompanied by

many application developers that cried foul play by the

software giant. Many developers claimed that they

were treated unfairly by a software power house which

practically holds a monopoly. Thus, although this

issue only marginally touches the main issue of the

study, we posed the following statement:

3. Developers of system software should be

required to license their software to all interested

application developers (with equal contract terms

for all licensees).

The fourth section was titled `Your Own Opinion'

and provided space for the respondents to express their

own ideas about protection of software as intellectual

property. We hoped that a qualitative analysis of the

comments would provide novel ideas.

The ®fth section raised the idea suggested by some

jurists and software developers: a sui generis law for

protecting software. There have been claims that soft-

ware is unlike any other type of creation, and therefore

E. Oz / Information & Management 34 (1998) 161±173 165

cannot be protected by laws designed to protect

mechanical inventions, books, graphical art, or music.

Thus, there may be a need for a special law that

protects software intellectual property. Some argue

that the law should grant protection for periods

shorter than guaranteed in copyright and patent laws

because the life cycle of software is relatively short.

Tables 9±11 present the three questions we posed to

solicit opinions on this idea, and a summary of the

responses.

The sixth section was formulated differently for

software developers and attorneys. It solicited biogra-

phical information about the respondents. A summary

of this information is presented in Tables 1 and 2.

The questionnaire was accompanied with a sheet

containing de®nitions of the different types of soft-

ware (see Appendix A). The purpose of the this

information was to create a common reference base

for the respondents.

3.2. Sample

Names and addresses of software developers were

taken from the 1995 SPA Membership Directory.

The SPA (Software Publishers Association) is the

largest US association of organizations whose main

business is to develop and sell software. The directory

includes some businesses who are involved in the

software industry but do not develop software. These

organizations were removed from the target sample.

The questionnaires were sent to 592 organizations.

The addressee in each organization was the person

whose name appears in the SPA directory, usually the

Chief Executive Of®cer. Fifty-three organizations

responded, for a response rate of 9%. Although

it is reasonable to assume that many respondents

were actively involved in the development of software

at the time they responded, some might have been

in management positions at that time. It was our

intentions to solicit their response as well, as they

represented the opinions of software-developing

organizations.

For the attorneys sample, two address lists of the

ABA (American Bar Association) were used: intel-

lectual property lawyers, and computer law lawyers.

In all, 2000 attorneys were sent questionnaires. A total

of 194 responded, for a response rate of 9.7%. The

reason for the low response rate may be (1) the

ubiquitous reluctance to ®ll out questionnaires, (2)

the feeling that a response will not make any differ-

ence even if the individual disagrees with the current

situation, (3) lack of interest in the subject, etc.

As is evident from Table 1, a great majority of

software developers who participated in the survey

are senior managers and the highest ranking of®cers in

the ®rms. The opinions of such people are very

important because of the important role that they play

in the software industry and the weight that their

Table 1

Software developer profiles

Occupation %

Programmer 0

Systems analyst 1

Project leader 4

Junior manager 2

Senior manager 33

Highest-ranking officer 60

Type of software developed

Systems software 8

Software development tools 12

Business 27

Entertainment 17

Education 21

Other 15

Organization size

Independent consultant 6

Employed by organization with less than 20 employees 30

Employed by organization with 21±500 employees 46

Employed by organization with over 500 employees 18

Table 2

Attorney profiles

Current legal specialty %a

Computer law 36

Copyright law 22

Patent law 45

Trade secret law 16

Organization

Sole proprietor 11

A partner in a law firm 39

Employed by a law firm 25

Employed by a software-developing organization 9

Employed by a non-software-developing organization 16

a Total 6� 100 because some respondents indicated more than one

category.

166 E. Oz / Information & Management 34 (1998) 161±173

positions carry in public debates on the issue. From a

perspective of formal training, this might be a group

similar to the group that Samuelson et al. surveyed.

But from a perspective of position in the organization

hierarchy and in¯uence in the software industry, this

group is representative of the top echelon.3 Table 2

provides a pro®le of the attorneys.

The software developers were also asked to report

the approximate dollar amounts of software sales by

their organizations, and the dollar amounts of their

organization's software purchases. Thirty-®ve of them

reported sales amounts, and thirty-six reported pur-

chase amounts. Sales ranged US$ 100,000±

800,000,000 with a mean of US$ 76 million and a

coef®cient of variation of 2.3. Purchases ranged US$

2000±500,000,000 with a mean of US$ 14.8 million

and a coef®cient of variation of 5.6.

4. Analysis and discussion

4.1. Preferred type of protection

The ®rst section of the questionnaire solicited opi-

nions regarding the existing legal protection of soft-

ware (Table 3). The ®rst question was: `̀ If all software

were to be protected under one of the current laws,

which would you prefer?''

Clearly, software developers would prefer copy-

right as the single protection avenue. While a majority

of attorneys would prefer copyright as well, over a

third prefer patents. As expected, neither group

regards trade secrets as a practical method of protect-

ing software.

The reasons for copyright preference by software

developers may be the low cost, simple procedure, and

short time involved in this avenue. Patents involve

high legal costs and long periods of time (two to four

years) to conclusion. The somewhat stronger support

for patents in the attorneys group may stem from the

fact that patents provide stronger protection. There

might also be an element of ®nancial bene®t involved

in this preference, because prosecution of patents

involves signi®cantly higher legal fees than registra-

tion of copyrights.

Patents are granted for twenty years. If the Patent

and Trademark Of®ce continues to grant patents to

software developers, the great majority of attorneys

would prefer the duration to stay the same, thus the

high mean of 16.1 years, as shown in Table 4. Soft-

ware developers would like to see the period shor-

tened. Their mean response was 13.7 years. The

difference between the groups is statistically signi®-

cant at P�0.0527.4 Examining the variance in both

groups, one cannot ignore the much greater standard

deviation among software developers (11.4) than

among attorneys (6.1). It seems that, on this issue,

software developers are not a cohesive group.

The frequency distribution of the responses drew

our attention to the fact that attorneys who prosecuted

patents tended to opt for longer patent periods. To

further investigate this assumption, we performed an

analysis of variance (ANOVA) of two groups: attor-

neys who classi®ed themselves as practicing only

patent law or patent law along with other classes,

and attorneys who did not practice patent law at all. As

is evident from Table 5, the difference in support for

Table 3

`̀ If all software were to be protected under one of the current laws,

which would you prefer?'' (%)

Software developers Attorneys Entire sample

Copyright 86 57 64

Patent 10 36 30

Trade Secret 4 7 6

n 52 188 240

Table 4

ANOVA: `̀ If the PTO continues to grant software patents, for how

many years should the patent be granted?''

Mean Std.

Dev.

DF P-value

Attorneys 16.1 6.1 Attorney/software

developer

1 0.0527

Software

developers

13.7 11.4 Residual 226

3Samuelson et al. reported that they surveyed `programmers'

attending a professional conference.

4We acknowledge that the acceptable maximum P-value in

social research is 0.05. By this criterion, the difference is not

statistically significant.

E. Oz / Information & Management 34 (1998) 161±173 167

patent periods is signi®cant (p�0.0002). Indeed,

patent attorneys would like a longer period for patents

(mean: 16.6 years) than non-patent attorneys (mean:

13.3 years).A similar investigation about the desired

length of software copyrights reveals that a great

majority in both groups favor the current period of

75 years for corporate copyright. Nobody in either

group suggested periods longer than guaranteed in the

current law, but a few suggested shorter periods; e.g.,

zero, ®ve, ten, or twenty years. Remarkably, the

response means (46.3 and 46 years) and standard

deviations were almost exactly the same (30.2 and

31). Clearly, the groups were almost unanimous

(p�0.9508) in their support of long periods of copy-

right protection for software (Table 6).

4.2. What to protect?

The study by Samuelson et al. revealed that soft-

ware developers had different preferences for legal

protection of different software features. We adopted

the same list of features as their survey. However, we

decided to drop `look and feel' because this term

seems to be misunderstood and subject to different

interpretations. In the legal literature it is usually inter-

preted as one or more of the user interface features.

These features are already included in the list.

4.2.1. Comparison of software developers: 1992 vs

1996

To see if there have been any differences in the

opinions of software developers over the years

between the studies, we compared columns a and b

of Table 7.

The comparison reveals an interesting difference: a

smaller percentage of software developers selected

`Neither' protection. Apparently, the trend among

software developers is to desire more protection for

software. Except for Computer Generated Images and

Source Code, support for protection of every software

category has increased. In general, the `no support'

turned into support for protection under the copyright

law.

There is also greater support for protection by

patent of module design and algorithms. The latter

is interesting, because for many years the Patent and

Trademark Of®ce refused to issue patents for any kind

of algorithm due to a Supreme Court decision. The

PTO now does grant patents for algorithms.

Of special interest are the User Interface categories,

a major category around which legal battles revolved.

It seems that the opinions of software developers are

converging with court decisions (e.g., the case of

Apple Computers against Microsoft). While an over-

whelming majority of the 1992 audience advocated no

protection at all for user interface commands, layout,

sequence, and functionality, only about half of our

sample concurred.

Since images are quite a clear case of art work

which traditionally has been easily protected by copy-

right, it was surprising to see that a smaller proportion

of our respondents supported any protection at all in

our study than the proportion that supported protection

in 1992.

Table 5

ANOVA: `̀ If the PTO continues to grant software patents, for how many years should the patent be granted?'' Patent vs. Non-Patent Attorneys

Count Mean Std. Dev. DF P-value

Patent attorneys 77 16.6 4.9 Patent/non-patent attorney 1 0.0002

Non-patent attorneys 96 13.3 6.1 Residual 172

Table 6

ANOVA: `̀ For how many years should copyrights be granted for software?''

Mean Std. Dev. DF P-value

Attorneys 46.3 30.2 Attorney/software developer 1 0.9508

Software developers 46.0 31.0 Residual 243

168 E. Oz / Information & Management 34 (1998) 161±173

4.2.2. Comparison of software developers and

attorneys

Ostensibly, attorneys should be interested in strong

protection of any software intellectual property,

because this would involve them in the process of

registration and prosecution. Software developers, on

the other hand, must consider both sides of the issue:

they bene®t when their own creation is protected, but

they are at a disadvantage when they use other devel-

opers' programs. So, either in the same person, or at

least within a group of developers, these two tenden-

cies are expected to `cancel' each other. Thus, we

expected to observe a greater overall support for

protection on the part of attorneys; this is not what

we found.

Considering protection (Copyright�Patent�Both)

against no protection (Neither), there is not a great

difference between software developers and attorneys.

In both groups, a high percentage (developers ± 93%,

attorneys ± 92%) supports protection of source code.

A relatively high percentage supports protection of the

object code of programs as well.

4.3. Protection by software purpose

Respondents were ®rst asked to react to the state-

ment: `̀ System software should be afforded greater

protection than application software.'' The respon-

dents circled a number on a seven-point scale where

1�`Strongly Agree' and 7�`Strongly Disagree.'

Overall, both attorneys and software developers

agreed with the statement. As shown in Table 8, mean

responses were in the ®ves with similar standard

deviations. As the P- value is greater than the accep-

table 0.05, we conclude that there is no difference

between the groups.

Within the application software category, business

software is sometimes perceived as more useful to the

economy because it helps create new business. The

respondents differed on the statement `̀ Business

application software should be afforded greater pro-

tection than game software.'' Attorneys highly agreed

with a mean response of 6.0, and they were quite

cohesive with their opinion (standard deviation of 1.6),

while software developers expressed a lower level of

agreement, and the variance of their response was

greater. With p�0.042, we may conclude that attor-

neys supported greater protection for business appli-

cation than for game software.

The probe by the US Department of Justice of

Microsoft's possible unfair trade practices raised a

controversial issue: should a monopolist owner of

system software and many applications be allowed

to use its power to discriminate among other applica-

tion developers who use its system software as a

platform?

Table 7

Support for Software Protection by Copyright or Patent: (a) Software Developers 1992, (b) Software Developers 1996, and (c) Attorneys 1996

Support for Copyright % Patent % Both % Neither % Number of

Respondents

a b c a b c a b c a b c a b c

Source code 86 66 52 2 4 16 3 23 24 8 7 8 318 53 194

Object code 65 72 54 2 4 17 3 13 22 27 11 7 293 53 194

Pseudocode 37 60 51 1 10 11 1 2 8 61 28 30 278 53 194

Module design 18 51 38 9 11 24 1 13 14 72 27 24 269 53 194

Algorithms 9 34 20 12 28 30 1 15 11 79 23 39 303 53 194

User interface commands 6 47 38 1 0 8 0 6 8 92 47 46 294 53 194

Icons 43 72 62 0 0 3 1 2 6 56 26 29 307 53 194

User interface layout 19 53 57 1 2 7 1 2 8 79 43 28 302 53 194

User interface sequence 9 38 31 1 2 20 0 9 9 90 51 41 295 53 194

Look and feel 5 ± ± 0 ± ± 0 ± ± 94 ± ± 312 ± ±

User interface functionality 5 42 16 4 6 28 0 5 10 91 47 45 300 53 194

Computer generated images 81 66 72 1 0 2 0 4 8 18 30 18 316 53 194

Source of a columns: Samuelson, P., Denber, M., Glushko, R.J., `Developments on the Intellectual Property Front,' 35 Communications of the

ACM, No. 6 (June 1992). Percentages are rounded.

E. Oz / Information & Management 34 (1998) 161±173 169

The statement we posed in this regard was: `̀ Devel-

opers of systems software should be required to license

their software to all interested application developers

(with equal contract terms for all licensees).'' Since a

great majority of software developers are in the busi-

ness of creating application rather than system soft-

ware, we expected to see strong agreement from

developers. To our surprise, a majority of software

developers disagreed with the policy, while attorneys

supported it. At P-value<.0001, the difference between

the groups is statistically signi®cant. The objection to

this idea in the software developers groups came

despite the fact that only eight percent of them were

involved in development of systems software.

4.4. Special law for protection of software

intellectual property

Some software developers and attorneys who have

become frustrated with the current laws have raised

the notion of a special law for protection of software.

Software developers often complain that the legal

profession, and especially the courts, lag behind tech-

nological development, and thus use legal doctrines

that are often inappropriate. Many software profes-

sionals bitterly criticized court decisions like the

infamous `look and feel.' Therefore, we expected

strong support for a special law among software

developers and a conservative attitude among attor-

neys. Surprisingly, a majority in both groups sup-

ported the idea (see Table 9).

Proponents of a `software protection law' often

suggested that it should afford protection narrower

than patent law but broader than copyright law with a

relatively short period of protection to allow others to

improve existing software. Table 10 indicates similar

attitudes in the two groups: a very small minority for

protection broader than patent; a small minority for

narrower than copyright protection; and a large, abso-

lute majority for protection broader than copyright but

narrower than patent. Should a special law be adopted

by the legislature, this convergence of opinions is

important in giving a direction. The mere fact that

the statement received such support may indicate the

need for such a law.

Proponents of a special law raised the period of

protection as a major reason. An analysis of variance

Table 8

Protection of software by purpose

Mean Std. Dev. DF P-value

ANOVA: `̀ Systems software should be afforded greater protection than application software'' (7-point scale)

Attorneys 5.3 1.9 Attorney/software developer 1 0.4851

Software developers 5.1 2.1 Residual 245

ANOVA: `̀ Business application software should be afforded greater protection than game software'' (7-point scale)

Attorneys 6.0 1.6 Attorney/software developer 1 0.0042

Software developers 5.2 2.1 Residual 245

ANOVA: `̀ Developers of system software should be required to license their software to all interested application developer (with equal

contract terms for all licensees)'' (7-point scale)

Attorneys 5.1 2.1 Attorney/software developer 1 <0.0001

Software developers 3.4 2.4 Residual 246

Table 9

`̀ Should congress pass a special law to protect software intellectual

property?'' (%)

Software developers Attorneys Entire sample

Yes 67 58 60

No 33 42 40

n 51 189 240

Table 10

The scope of `the software protection law' should be... (%)

Software

developers

Attorneys Entire

sample

Narrower than copyright 26 20 21

Broader than copyright

but narrower than patent

66 73 72

Broader than patent 8 7 7

n 47 158 205

170 E. Oz / Information & Management 34 (1998) 161±173

yields a statistically signi®cant difference between

software developers and attorneys with regard to the

number of years to protect software with a special

`software protection law.' As re¯ected in Table 11, the

mean number of years that software developers would

like is 22.2, while attorneys would settle for almost 14

years. Again, the standard deviations of the responses

indicate greater cohesion in the legal profession than

among software developers. In our sample, software

developers desired protection periods that ranged from

zero to 100 years.

4.5. Respondents' Written Opinions

Ninety attorneys (46%) and nineteen (36%) soft-

ware developers provided written comments. To our

disappointment, no novel idea transpired. The major-

ity of the comments either criticized the current legal

situation or said it provided proper protection. There

was signi®cantly more criticism in the software devel-

opers groups.

4.5.1. Attorneys

Some attorneys pointed at the source of problems,

e.g.: `̀ The growth in personal computers is attributa-

ble to the lack of regulation and standardization of

software. Innocent programmers ought not have to

worry about patent infringement, and should be free to

draw from known programming techniques, as long as

they do not copy source code.''

Others suggested classi®cation of software and

different protection to each class. One wrote: `̀ [There]

needs to be a distinction between application software

that functions as a tool and software that is used much

like an interactive book. The former, along with

operating systems lends itself to patent-like protec-

tion, while the latter would be better protected under

copyright laws. The author should have the choice,

providing certain criteria are met.''

Protection periods were a `hot' issue. Several

respondents suggested shorter periods, e.g.: `̀ The

protection term should be shortened from the usual

patent/copyright paradigm. The developer is protected

during the lead-time, but the software should not be

held away from the public long enough to unduly sti¯e

development and advancement in the industry. Terms

of ten years are appropriate.''

While many simply opined that the current laws are

adequate, others wrote that changes should be made

either due to the short `life span' of software, or

because of the great investment involved in patenting.

For example, one attorney wrote: `̀ Currently, smaller

clients refuse to seek patent protection due to the fact

that most software programs become obsolete quickly.

Therefore, a quicker `patent' process, maybe with a

shorter protected term, would be helpful. Clearly

de®ned software patenting rules would be helpful.''

Another wrote: `̀ A new statutory scheme for protec-

tion of computer software is needed. Existing laws did

not envision protection of matter such as computer

software and are ill-suited for the purpose.''

To solve this problem, many respondents supported

a sui generis law. Some alluded to another special law.

For example, one individual commented: `̀ Just as the

Semiconductor Chip Protection Act of 1984 protects

chip design, a separate law should be passed to protect

computer software inventions and codes.''

And some accused the public of making much fuss

over the issue due to misunderstanding. For example,

one wrote: `̀ Most of the perceived problems with the

current patent and copyright laws have their roots in

the ignorant statements that are regularly published in

the press. If more people knew what the law is, there

wouldn't be so much controversy.''

With a look into a new mode for software sale

through networks, one respondent wrote: `̀ The recent

position by the US Patent and Trademark Of®ce is in

the right direction. What wanted most is a realistic

substitute for the `shrink wrap' license to ensure that

trade secrets are maintained on source and object

code, etc. unless published in a patent or otherwise.

Possibly a `click' acceptance on the Internet will be

interpreted by the courts as suf®cient to show a

con®dential relationship vis a vis the software sent

over the net.''

Table 11

ANOVA: `̀ For how many years should protection under `the

software protection law' be granted?''

Mean Std.

Dev.

DF P-value

Attorneys 13.7 12.6 Attorney/software

developer

1 0.0006

Software

developers

22.2 23.0 Residual 246

E. Oz / Information & Management 34 (1998) 161±173 171

4.5.2. Developers

Software developers were especially concerned

with the overly long periods of protection and the

bureaucratic hurdles in obtaining patents. Almost all

of those who made comments suggested either short

periods for software patents or none at all.

The president of one small company (annual sales:

$2 million) opined: `̀ Over the next ten years software

patent battles will destroy the US software industry.

Most of the true innovators are with small companies

that lack the resources to play the patent game. Many

plan to leave the industry if threatened by patents.

Also, the impossibility of doing appropriate patent

searches on each of the thousands of algorithms in a

given piece of software will result in total stagnation

among those parties trying to honor the law.''

One software developer discounted the merit of

protection and made a ®nancial suggestion: `̀ Recoup

R & D in the ®rst distribution phase and then let go

because technology turns within an 18 month product

cycle. Protection and enforcement is not a solution.''

Unfortunately, the respondent did not elaborate on the

idea. Questions remain: What is `̀ the ®rst distribution

phase?'' This phase may be different for different

organizations and different products.

5. Conclusion

Majorities of both software developers and attor-

neys favor copyright as the legal method for protection

of software intellectual property, but more attorneys

still prefer patenting.

If the US Patent and Trademark Of®ce continues to

grant software patents, attorneys prefer a longer pro-

tection period. There is no difference between the

groups with regard to the desired length of copyright

protection. Majorities in both groups prefer the current

period of 75 years, and the average number of years

desired in both groups is 46 years.

By comparing information from 1992 and 1996 we

learn that software developers now are more in favor

of protection of user interfaces. This may be due to the

proliferation of new small software businesses whose

leaders feel that protection of their intellectual assets is

essential for the success of their organizations.

Comparing opinions of today's software developers

and attorneys, we found little differences between the

groups regarding different categories of software. We

also found high proportions of support for protection

of source and object codes. When the issue was the

purpose of the software, we found no signi®cant

difference for system software. Both groups prefer

stronger protection for systems software than for

application software. Attorneys, more than develo-

pers, favored greater protection for application soft-

ware than for game software.

In light of suggestions that Microsoft held too much

monopolistic power with its system software, we

expected software developers to favor regulations that

would force owners of systems software to offer their

creation to any interested party with equal terms. To

our surprise, there was signi®cantly more support for

this idea among attorneys than among the developers

although only a small minority of the developers were

involved in creating systems software.

Majorities in both groups support a special law for

protection of software intellectual property. Majorities

in both groups also agreed that the scope of such a law

should be broader than that of copyrights but narrower

than that of patents.

Acknowledgements

This study was generously funded by the Richard L.

Barber Fund for Interdisciplinary Legal Research.

Appendix A

Technical terms

Source Code: The program written in the original

high-level language, e.g., COBOL or C, in which the

instructions are easily readable by a programmer who

possesses a basic knowledge of that programming

language.

Object code: The machine-language equivalent of the

source code. To obtain an object code version of the

program, a special program called compiler is used to

convert the code. While source code can easily be

modi®ed by anyone who masters the programming

language, the object code is virtually gibberish to

anyone who does not know machine language. For

172 E. Oz / Information & Management 34 (1998) 161±173

this reason, software developers usually offer for sales

only the object code, not the source code.

Pseudocode: A generic description of what the pro-

gram does, written in simple English rather than in any

speci®c programming language.

Module design: A graphical description of a part of

the program that would perform a distinctive function.

Algorithms: Mathematical sets of steps that a pro-

gram follows to achieve a goal.

User interface commands: Commands that the user

enters into the computer to invoke a speci®ed reaction.

The commands trigger other, internal commands in

the program.

Icons: Small pictures on a computer screen that the

user can click via an input device called mouse instead

of inputting a literal command.

User interface layout: The arrangement of com-

mands, icons, and other means of input on the com-

puter screen.

User interface sequence: The order in which the user

instructs the computer to perform a task, via com-

mands, icons, or other input means.

User interface functionality: The effectiveness of the

part of the program with which the user interacts.

Computer generated images: Graphical creations

produced through the use of a computer.

References

[1] C.H. Nadan, Comment: A Proposal to Recognize Component

Works: How a Teddy Bears on the Competing Ends of

Copyright Law, California Law Review 78, 1990, pp. 1633.

[2] E. Oz, Ethics for the Information Age, Wm.C. Brown,

Dubuque, IA, 1994.

[3] N.P. Terry, GUI Wars: The Windows Litigation and the

Continuing Decline of Look and Feel, Arkansas Law Review

47, 1994, pp. 93.

[4] P. Samuelson, M. Denber, R.J. Glushko, Developments on

the Intellectual Property Front, 35 Communications of the

ACM, No. 6, June 1992, pp. 33±39.

[5] R. Stallman, S. Gar®nkel, Against user interface copyright,

Communications of the ACM 33(11), 1990, pp. 15±18.

EFFY OZ, associate professor of man-

agement science and information sys-

tems at Penn State University, Great

Valley, received his doctorate from

Boston University. His research and

teaching interests lie in the areas of

strategic information systems, ethical

issues in information technology, the

impact of information technology on

decision making, and management of

information technology.

Dr. Oz was an executive for a large aerospace and electronics

corporation for eleven years. His articles have been published in

Decision Science, MIS quarterly, Communications of the ACM,

Information & Management, OMEGA, and Journal of Business

Ethics, among other academic and professional journals. He is the

author of four books and several book chapters. In 1997, Dr. Oz

was a co-recipient of the Notable Contribution to the Information

Systems Literature Award by the Information Systems Section of

the American Accounting Association. He was a member of the

editorial board of Journal of Systems Management and is now a

member of the editorial review board of Journal of Global

Information Technology Management. He has given professional

seminars to managers of various organizations and frequently

speaks to professional groups.

E. Oz / Information & Management 34 (1998) 161±173 173

